Понятие цилиндра
На этом уроке мы выучим много новых понятий: что такое цилиндр, его основания и образующие, поговорим о радиусе и высоте цилиндра. Также мы поговорим о вписанных и описанных призмах и многом другом.
Какими элементами обладает цилиндр
Вокруг нас существует множество объектов, которые являются физическими моделями цилиндра, или проще говоря, имеют форму цилиндра.
Например, кружки и стаканы имеют форму цилиндра. Карандаши, шляпы, пуфики, барабан также имеют форму цилиндра. Хлопушка, насос, палка колбасы – все они также имеют цилиндрическую форму. Некоторые архитектурные сооружения. Колонны храмов и соборов, выполненные в форме цилиндра, подчеркивают их гармонию и красоту.
А что вы думаете на счет всем известной Пизанской башни? Можно назвать ее форму цилиндрической или нет, так как она наклонена?
Пизанская башня. Кстати, а вы знали, что Пизанская башня была наклонена непреднамеренно? Все произошло потому, что почва была слишком мягкой и проседала с одной стороны – еще во время строительства. Так что не будь этого, башня была бы цилиндрической в привычном для нас смысле. Забавно, что башня продолжала наклоняться все это время, процесс завершился лишь в 2008 году, совсем недавно!
Сходство цилиндра с призмой
Не сложилось ли у вас ощущения, что все это вам уже знакомо? Два равных основания, высота, боковые «ребра», равные и параллельные друг другу? Где мы это уже видели? Конечно, в призме! И так же, как с цилиндром, призмы бывали прямые и наклонные.
Просто у призмы в основаниях – многоугольники, а у цилиндра – круги. Но ведь круг – это предельный случай многоугольника, а значит, многие факты и теоремы для цилиндра будут аналогичны тем, что были верны для призмы.
Цилиндрическая поверхность – это поверхность, образованная прямыми, проходящими через все точки окружности, перпендикулярными плоскости, в которой лежит эта окружность.
Эти прямые – образующие цилиндрической поверхности.
Прямая, проходящая через центр окружности, перпендикулярно к плоскости – ось цилиндрической поверхности.
Цилиндр (круговой цилиндр) – тело, которое состоит из двух кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.
Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, – образующими цилиндра.
Основания цилиндра равны и лежат в параллельных плоскостях, а образующие цилиндра параллельны и равны. Поверхность цилиндра состоит из оснований и боковой поверхности. Боковую поверхность составляют образующие.
Цилиндр называется прямым, если его образующие перпендикулярны плоскостям основания. Цилиндр можно рассматривать как тело, полученное при вращении прямоугольника вокруг одной из сторон как оси. Существуют и другие виды цилиндра – эллиптический, гиперболический, параболический. Призму так же рассматривают, как разновидность цилиндра.
Радиус цилиндра – радиус его основания. Высота цилиндра – расстояние между плоскостями оснований.
Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим. Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением. Плоскость, проходящая через образующую прямого цилиндра и перпендикулярная осевому сечению, проведённому через эту образующую, называется касательной плоскостью цилиндра.
Плоскость, перпендикулярная оси цилиндра, пересекает его боковую поверхность по окружности, равной окружности основания.
Призмой, вписанной в цилиндр, называется такая призма, основания которой – равные многоугольники, вписанные в основания цилиндра. Её боковые рёбра являются образующими цилиндра. Призма называется описанной около цилиндра, если её основания — равные многоугольники, описанные около оснований цилиндра. Плоскости её граней касаются боковой поверхности цилиндра.
Площадь боковой поверхности цилиндра можно вычислить, умножив длину образующей на периметр сечения цилиндра плоскостью, перпендикулярной образующей.
Площадь боковой поверхности прямого цилиндра можно найти по его развёртке. Развёртка цилиндра представляет собой прямоугольник с высотой h и длиной P, которая равна периметру основания. Следовательно, площадь боковой поверхности цилиндра равна площади его развёртки и вычисляется по формуле:
Sb = Ph.
В частности, для прямого кругового цилиндра:
P = 2πR, и Sb = 2πRh.
Площадь полной поверхности цилиндра равна сумме площадей его боковой поверхности и его оснований.
Для прямого кругового цилиндра:
Sp = 2πRh + 2πR2 = 2πR(h + R)
Для нахождения объёма наклонного цилиндра существуют две формулы.
Можно найти объём, умножив длину образующей на площадь сечения цилиндра плоскостью, перпендикулярной образующей.
Объём наклонного цилиндра равен произведению площади основания на высоту (расстояние между плоскостями, в которых лежат основания):
V = Sh = S l sin α,
где l – длина образующей, а α – угол между образующей и плоскостью основания. Для прямого цилиндра h = l.
Формула для нахождения объёма кругового цилиндра выглядит следующим образом:
V = π R2 h = π (d2 / 4)h,
где d – диаметр основания.
Основные элементы цилиндра
- Основания цилиндра – два одинаковых по размеру/площади круга с центрами в точках O1 и O2.
- R – радиус оснований цилиндра, отрезки AD и BC – диаметры (d).
- O1O2 – ось симметрии цилиндра, одновременно является его высотой (h).
- l (AB, CD) – образующие цилиндра и одновременно с этим стороны прямоугольника ABCD. Равны высоте фигуры.
Развёртка цилиндра – боковая (цилиндрическая) поверхность фигуры, развернутая в плоскость; является прямоугольником.
- длина данного прямоугольника равна длине окружности основания цилиндра (2πR);
- ширина равна высоте/образующей цилиндра.
Примечание: формулы для нахождения площади поверхности и объема цилиндра представлены в отдельных публикациях.
Виды сечений цилиндра
- Осевое сечение цилиндра – прямоугольник, образованный в результате пересечения фигуры плоскостью, проходящей через ее ось. Например, взять такой: ABCD. Площадь такого сечения равна произведению высоты цилиндра на диаметр его основания.
- Если секущая плоскость проходит не по оси цилиндра, но при этом перпендикулярна его основаниям, то сечением, также, является прямоугольник.
- Если секущая плоскость параллельна основаниям фигуры, то сечение – это идентичный основаниям круг.
- Если цилиндр пересекается плоскостью, не параллельной его основаниям и, при этом, не касающейся ни одной из них, то сечением является эллипс.
- Если секущая плоскость пересекает одно из оснований цилиндра, сечением будет парабола/гипербола.
Виды цилиндров
- Прямой цилиндр – имеет одинаковые симметричные основания (круг или эллипс), параллельные друг другу. Отрезок между точками симметрии оснований перпендикулярен им, является осью симметрии и высотой фигуры.
- Наклонный цилиндр – имеет одинаковые симметричные и параллельные друг другу основания. Но отрезок между точками симметрии не перпендикулярен этим основаниям.
- Косой (скошенный) цилиндр – основания фигуры не взаимно параллельны.
- Круговой цилиндр – основаниями является круг. Также выделяют эллиптические, параболические и гиперболические цилиндры.
- Равносторонний цилиндр – прямой круговой цилиндр, диаметр основания которого равен его высоте.
Так как все образующие и ось перпендикулярны плоскости альфа, значит они параллельны друг другу (вспомнить теорему «Если две прямые перпендикулярны к плоскости, то они параллельны»).
Если построить ещё одну плоскость бета, которая будет параллельна плоскости альфа, то отрезки образующих, заключённые между плоскостями альфа и бета будут параллельны и равны друг другу (вспомнить свойство параллельных плоскостей «отрезки параллельных прямых, заключённые между параллельными плоскостями, равны»). Точки, являющиеся концами отрезков параллельных прямых и лежащие в плоскости бета, дают окружность, равную окружности, лежащей в плоскости альфа.
Также цилиндр можно получить вращением прямоугольника вокруг одной из сторон. Тогда эта сторона (вокруг которой происходит вращение) будет совпадать с осью цилиндра, противоположная сторона будет образовывать боковую поверхность, а две оставшиеся стороны образуют верхнее и нижнее основания, одновременно являясь радиусами цилиндра.
Сечения цилиндра различными плоскостями
Пусть секущая плоскость проходит через ось цилиндра. Такое сечение называют осевым. Оно представляет собой прямоугольник, две стороны которого – образующие, а две другие – диаметры оснований цилиндра.
Если секущая плоскость перпендикулярна оси цилиндра, то сечение является кругом.
Если секущая плоскость проходит параллельно оси цилиндра, но не содержит саму ось, то сечение является прямоугольником две стороны которого – образующие, а две другие – отрезки, соединяющие эти образующие в верхнем и в нижнем основании (ЗАМЕЧАНИЕ: эти отрезки меньше диаметров оснований цилиндра).
Основные формулы
Формула для вычисления площади боковой поверхности цилиндра: Sбок=2пRL.
То есть площадь боковой поверхности равна произведению длины окружности основания цилиндра на его высоту.
Площадью полной поверхности цилиндра называется сумма площадей боковой поверхности и двух оснований. В виде формулы это можно записать так: Sполн=2пR(R+L).
Примеры и разбор решения заданий тренировочного модуля
- Дан цилиндр.
Выберите значение площади его боковой поверхности
- 60π
- 192π
- 120π
- 36π
Решение:
Площадь боковой поверхности вычисляется по формуле: S=2πRL.
R=6, L=10
Подставим: S=2π·6·10=120π.
Ответ: 3) 120π
- Высота цилиндра на 6 больше его радиуса, площадь полной поверхности равна 144π. Найдите его образующую.
Решение:
Sполн=2πR(R+L)
По условию задачи L=R+6.
144π=2πR(R+R+6).
Получили квадратное уравнение относительно радиуса:
R2+6R-72=0
R=-12 или R=6. Так как длина радиуса не может быть отрицательной, получаем значение: R=6. Тогда образующая цилиндра равна 12.
Ответ: 12.
- Задача
Осевое сечение цилиндра – квадрат со стороной 20 см. Найти высоту цилиндра, радиус цилиндра, ось цилиндра и площадь основания цилиндра.
Решение
Одна из сторон осевого сечения – образующая (она же равна оси цилиндра и она же равна высоте). Значит, высота и ось равны 20 см. Далее, вторая сторона осевого сечения – диаметр основания. Он равен 20 см, значит, радиус – 10 см. Наконец, площадь основания ищется по формуле
Итак, ребята, на этом уроке мы изучили, что такое цилиндрическая поверхность, её образующая; цилиндр, все его элементы и сечения; площади поверхностей цилиндра.
Наши репетиторы помогут
-
Подготовиться к поступлению в любой ВУЗ страны
-
Подготовится к ЕГЭ, ГИА и другим экзаменам
-
Повысить успеваемость по предметам